

Benha University Faculty of Engineering Shoubra

Antennas & Wave Propagation

Electrical Eng. Dept. 4th year communication 2016-2017

Sheet (7)

- 1. Design a two-element uniform array of isotropic sources, positioned along the Z-axis a distance of $\lambda/4$ apart, so that its only maximum occurs along $\theta=0^{\circ}$, assuming end fire conditions (Maximum at $\psi=0$), find the
 - i. Relative phase excitation of each element.
 - ii. Array factor of the array.
 - iii. Directivity.
- **2.** Construct an antenna array using 2-isotropic elements to produce the cardioid radiation pattern shown in figure (1).

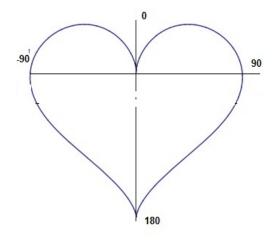


Figure (1)

Dr. Moataz Elsherbini Eng.Shaimaa Ezzat

Benha University Faculty of Engineering Shoubra

Antennas & Wave Propagation

Electrical Eng. Dept. 4th year communication 2016-2017

3. Two infinetismal (short) dipoles of equal length are equidistant from the origin with their centers lying on the y-axis, and oriented parallel to the z-axis, they are excited with currents of equal amplitude. The current in dipole 1 (at y = -d/2) leads the current in dipole 2 (at y = +d/2) by 90° in phase. The spacing between dipoles is one quarter wavelength. To simplify the notation, let E_0 equal the maximum magnitude of the far field at distance r due to either source alone.

Derive only expressions for the following plane patterns

i.
$$|E_{\theta}|$$
 For $\Phi = 0^{\circ}$

ii.
$$|E_{\theta}|$$
 for $\Phi = 90^{\circ}$

iii.
$$|E_{\theta}|$$
 for $\theta = 90^{\circ}$

iv.
$$|E_{\emptyset}|$$
 for $\Phi = 0^{\circ}$

v.
$$|E_{\emptyset}|_{\text{for }\Phi} = 90^{\circ}$$

vi.
$$|E_{\emptyset}|$$
 for $\theta = 90^{\circ}$

Dr. Moataz Elsherbini Eng.Shaimaa Ezzat